INTEL ADVISOR: ROOFLINE AUTOMATION

Intel Software and Services, 2017

Zakhar Matveev, PhD, Product architect

5 Steps to Efficient Vectorization - Vector Advisor
(part of Intel® Advisor, Parallel Studio, Cluster Studio 2016)

1. Compiler diagnostics + Performance Data + SIMD 2. Guidance: detect problem and recommend how to
efficiency information fix it
& PA Issue: Peeled/Remainder loop(s) present
S Total Compiler Vectorization @ All or some source loop iterations are not executing in the kernel loop. Improve performance by moving
Function Call Sites and Loopsa Timel | Time [Y 8 source loop iterations from peeled/remainder loops to the kernel loop. Read more at Vector Essentials,
Loop Type Why o Vectorizstion? Utilizing Full Vectors...
[{loop in runCForallLambdaloops| 00845 00845 [Scalar wector dependence prevents vector ., 3 Recommendation: Align memory access
[loop in runCForaliLambdal oops] 01405 37445 [Scalar inner loap s 3lready vectorized Projected maximum performance gain: High
BV [loop i st Complex_base ¢double.struct € double complexszi...| 00314 00314 @ | [Vectorized Bodvl | Projection confidence: Medium
Vectorized S5E; SSE2 loop processing Floatd2: Floatfd data typ) se;one of the memory acresses in thi souce loop does ot
o l;up o e | H 3. "ACCUrate" Trlp Counts + FLO PS: understand ?v‘a::zs:n;r::yrell the compiler your memory access is aligned.
[{loop in stdxbasic_string<char struct std:ichar traits <char> class stdvallo.. 0,005 Utlllzatlonl parauellsm granUl'arlty & overheads
% [loop in std:basic_string<char,struct stdk:char traits <chars class stduallo.. 0,005 O g | e Come 4 izeof(float), 32);
[{loop in stdznurm_put<char,class stdzostreambuf_teratar<char struct st 0.0005 Medon 4 | M |Mar | beation Duraion, | G2l Court
315150 1 1B 1
0ast 1 T 20600
omesl i1 1 2 2756
osl i2 18 17819
oosl i3 15 131315
4. Loop-Carried Dependency Analysis 5. Memory Access Patterns Analysis
SiteName SiteFunction Sitelnfo Loop-Carried Dependencies Strides Distribution Access Pattern
loop_site 203 runCRawloops runCRawloops.coc1063 @ RAW:L No information available No information available
) loop_site 139 runCRawLoops runCRawloops.coc622 No information available 39%36% / 25 Mixed strides
D @& Type Site Name Sources Modules State loop_site 160 runCRawloops runCRawloops.cocd25 No information available 100%/0%/0% All unit strides
P1 @ Parallel site information site2 dgtest2.cpp dgtest2 v Not a problem
° - N Memory Access Patterns
P2 Read after write dependency site2 dgtest2.cpp dotest2 New O e T — P —
P3 @ Read after wiite dependency site2 dqtest2 cpp dqtest2 Re Mew 2p2 @ 001 Unit stride sunCRawl oops.coci3? | lcals.exe
Wiite after write dependency|site2 dqtest2.cpp dotest2 INEw £
P5 @ Wiite after wiite dependency site2 dgtest2.cpp dotest2 Fe New
P& @ Wiite after read dependency site2 dgtest2.cpp dotest2 Re hew 3
P7 @ Wiite atter read dependency site2 datest2 cpp; idle.h dgtest2 Pe New 0:0 Unit stride runCRawloops.coc638 cals.exe
=p30 @ -1575;-63;-26;-25;-1; 26;63; 2164801 Variable stride runCRawLoops.0oc628 Icals.exe

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Welcome | 000 X

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Vectorization Analysis Workflow
[Webcome [e000 x|

- dit &
’ Edit & "~
’ Take Compile ~.
L Snapshot .
- T T~ . AR
rd : = -~ \ \.
- ___. N\
" 4. Check Memory | N
i | . 1. Run Surve
. Access Patterns | N B
| o o o o o o e e o o e e e e 1 - \
06% \J .
@h -\ I
L B _ 9\2‘:&9 . I
v 3. Check i QOQ{D i 2. Check !
*." Dependencies | RO - 4
L_Jependencies | ! ; Trip Counts |
'\ ~ _____'____________,_'
~ O~ (Mark-up ,
s Loops) .7 '
Use the . P
same target binary ~ -~ . _ . _ .—="" Lo
within every cycle "~ . _ R -

Quickly characterize the efficiency of your code:
Advisor Summary.

" Summary of predicted parallel behavior I Intel Advisor XE 2016

BB Elapsed time: 9565 @ Not Vectorized GIRTZA Al odules vl All Sources v

,Summar_\,r -, Survey Report # Refinement Reports & Annotation Report

Use the summary view

to quickly characterize
your program

@ Program metrics
Elapsed Time: 9.66s
WVector Instruction Set: AVK

Mumber of CPU Threads: 1

@ Loop metrics

Total CPU time 9.27s D 100.0%
Time in 2 vectorized loops 811s D 27.6%
Time in scalar code 1155 B 12.4%
{¥) Vectorization Gain/Efficiency”
Vectorized Loops Gain/Efficiency 2,64 ~B6% TI m e I n
Program Theoretical Gain 243x

Scalar vs. Vector loops.

) @ Top time-consuming Innps‘?'

Loop Source Location Self Time? Total Time? . .
matvec Muttiply.c:72 562565 5.62565 S I M D Eff| cien Cy
matvec Multiply.c:66 2.4380s 2.4880s

(& matvec Multiply.c:49 0.5234s 6.1450s
matvec Multiply.c:49 0.4083s 2.8969s
matvec Multiply.c:85 0.1150s 0.1150s

@ Refinement analysis data” F H
_ Oocus on Hottest
These loops were analyzed for memory access patterns and dependencies:

Dependencies Strides Distribution Site Name ke r n e ls

Site Location

[loopin .. at . Mo information available 67% / 33% /0% loop site &
@ [loopin .. at Mo infermation available Mo strides found loop site 14

O [loopin . at_.] @ RAW:T A WAW: Mo infermation available loop site 970

Optimization Notice
Intel Confidential

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Advisor Survey: Focus + Characterize.
One stop shop.

What prevents
vectorization?

" Where should | add vectorization and/or threading parallelism? 1D Intel Advisor XE 2014

BB Elapsed time: 9.49 @ Not Vectorized GRZH Al Modules vl ansources W loops v | Al Threads

Summary uSUNE}f MLl ® Refinement Reports & Annotation Report

Vectorized Loops

Function Call Sites and Loops Why Mo Vectorization?

B @ [loop in matvec at Multiply.c:72] B | ® | Inefficient .. 5.281s 5281s 0 | Vectorized (Bo...
[locp in matvec at Multiply. c:66] [T @1 Ineffective ... 28280 2.828:@ Vectorized (Bo... 4
4|0 [loop in matvec at Multiply.c:48] [l 05310 5812« @ Scalar
4|0 [loop in matvec at Multiply.c:48] [l 0516510 334=@ Scalar
1] (5 [locp in matvec at Multiply.c:83] [@ 1Assumedd.. 0.063s1 0.063s1 Scalar & vector g
1 0.01esl 9,297 I Scalar

0.000s | Scalar

HOW to improve

performance

All the data you need for effective vectorization

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of ot

Advisor Memory Access Pattern (MAP):

know your access pattern

Site Location

‘Loop-[arriedDependencies ‘StridesDistribution |AccessPattern

Site Name

[loop in fPropagationSwap at IbpSUB.cpp:1247] No information available

33% IFHIGEA \vixed strides

loop_site_60

e
blue color /_‘iuow./_, red color;
fraction of unit stride “fixed" stride fraction of irregular (variable sfride) accesses
accesses accesses rafio
Memory Access Patterns Report
H H Type Source Site Name | Variable
Unit-Stride access P | |
16% /84% /0% Mixed strides " I
for (i=0; i<N; i++) [@ 16%:percentage of memory instructions with unit stride or stride 0 accesses
A[i] = C[i]*D[i] 1247 for (int mw=1; m<=half; m++) | Unit stride (stride 1) = mstrL!ction accesses mermory that consistently changes
1248 nextz = £CppMod (i + lbv[3*n] b}r. one element From iteration to iteration))))
_ R Stride 0 = Instruction accesses the same memory from iteration to iteration
1249 nexty = fCppMod(j + lbv[3*m+ . . I -
. 1250 nextz = FCppMod (k + lbv[3*mt @ 84 percentage of memeory instructions with fixed or constant non-unit
Constant stride access = stride accesses
®p11 @ 01 Constant stride (stride M) = Instruction accesses memaory
for (i=0; i<N; i++) by M elements from iteration to iteration
) . A EP12 -289559; -274359; -14477; -13717; -13679; 723; 302519; Example: for the double floating point type, stride 4 means the memory
point[i] .x = x[i]

1251 ilnext =
| |1252 ¥ifndef SWAP OVERLAP
| 1253 fawapPair (lbf[il*lbaitelength + l*lbsy.:

(nextx * Ymax + nex

Variable stride access
i<N; i++)
C[i]*D[i]

for (i=0;
A[B[i]] =

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.

address accessed by this instruction increased by 32 bytes, (4*sizecf(double))
with each iteration

@M 0% percentage of memory instructions with irregular (variable or random)
stride accesses
Irreqgular stride = Instruction accesses memory addresses that change by an
unpredictable number of elements frem iteration to iteration
Typically observed for indirect indexed array accesses, for example, a[index|i]]

fH - gather (irreqular) accesses, detected for v(p)gather” instructions on AVX2
Instruction Set Architecture

*Other names and brands may be claimed as the property of oth

Am | bound by VPU/CPU or by Memory?
ROOFLINE ANALYSIS

Peak FP

GFlop/s

Flop /byte

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

From “Old HPC principle” to modern performance
model

*Old” HPC principles:
1. “Balance” principle (e.g. Kung 1986) — hw and software parameters altogether

2. “Compute Density”, “intensity”, “machine balance” - (FLOP/byte or Byte/FLOP

ratio for algorithm or hardware). E.g. Kennedy, Carr: 1988, 1994: “Improving the
Ratio of Memory operations to Floating-Point Operations in Loops “.

More research catalyzed by memory wall/ gap growth and by GPGPU

Optimization Notice

Intel Confidential

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory Wall

100,000

10,000 B656000300 s JAONTH000000000000

1,000 oo mreeere e g

Processor

00 Fror o B

Performance

10 e T

Patterson, 2011

1980 1985 1990 1995 2000 2005 2010
Year

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved. Intel Confidential
*Other names and brands may be claimed as the property of others.

From “Old HPC principle” to modern performance
model

More research catalyzed by memory wall/ gap growth and by GPGPU:

- 2008, Berkeley: generalized into Roofline Performance Model. Williams, Waterman,
Patterson. “Roofline: an insightful visual performance model for multicore”

- 2014: “Cache-aware Roofline model: " Ilic, Pratas, Sousa. INESC-ID/IST, Technical Uni of
Lisbon.

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved. Intel Confidential
*Other names and brands may be claimed as the property of others.

From “Old HPC principle” to modern performance

model “*Old” HPC principles:

1. “Balance” principle (e.g. Kung 1986) — hw and software parameters altogether

[1]

2. ‘“intensity”, “machine balance” - (FLOP/byte or Byte/FLOP ratio for algorithm

or hardware). E.g. Kennedy, Carr: 1988, 1994: “Improving the Ratio of Memory
operations to Floating-Point Operations in Loops “. ' j

More research catalyzed by memory wall

— 2008, Berkeley: generalized into Roofline Performance Model. Williams, Waterman,
Patterson. “Roofline: an insightful visual performance model for multicore”

— 2014: “Cache-aware Roofline model: " llic, Pratas, Sousa. INESC-ID/IST, Technical Uni of
Lisbon.

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Density, Intensity, Machine balance

Arithmetic

Total Flops computed

Intensity

Total Bytes transferred

- e e e mm mm o mm mm mm e mm e =

Total Flops computed

i .)
O I Operational ~
Intensity

Total Bytes transferred betwee
DRAM (MCDRAM) and LLC

e e m m m m o m m m m m mm Em mm mm mm mm Em mm e = = = = =

—— = —— —— e o = o = = = = =

0.1-1.0 flops per byte Typically < 2 flops per byte 0(10) flops per byte
A A A
f N N f 3
ensity
b
Sphy
BLAS1,2 Particle
i Methods
Stencils (PDEs) TS, Derae
Latfice Boltzmann Spectral Methods Linear Algebra
Methods (BLAS3)
\ J J o\
Y Y Y
0(1) O(log(N)) O(N)
e ___WP

S

—— = =

Arithmetic
Intensity

Total Flops computed

Total Bytes transferred_between
CPU and “memory”

i :
Intensity

P e e e e e

Total Intops+Flops computed

Total Bytes transferred between
CPU and “memory”

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

/|

e

N o e e e o =

Roofline Automation in Intel®
(Vectorization) Advisor 2017

Performance (GFlops/sec) L] |§| - LI é
Roof Name Visible Selected
__.-=""" (| DRAM Bandwith
Egch Roof (slope) b —| L1 Bandwidth
Gives peak CPU/Memory throughput ‘ =" | L2 Bandhwictn O
of your PLATFORM (benchmarked) LB O
Scalar Add Peak O
SP Vector Add Peak
. DP Vector Add Peak O O
SP Vector FMA Peak
Each Dot . . DP Vector FMA Peak O O
represents loop or function in
Yo U R APPLICATIO N (profi led) Loop Weight Represertation Cancel Default
— e [] Size [+] Color Visible
+ @ 4 green
= Threshold Walue (0.2 %
+ O 5 yellow
= Threshold Value |2 %
+ . 8 red

0.0015
Seff Time: 10.918 s Total Time: 10.918s

4 . . .
wa— . - . N Interactive mapping to source and performance profile
-~ ...| © Synergy between Vector Advisor and Roofline: FMA example
4399 for (i__=1; i__ «<=1_2; +Hi_) 8
4400 aali_ +1_ * aadiml] +=EB[A_ +1_ * Ebamd] *celt_ + A e Customizable chart

4401 * co diml]; —r

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Roofline model: Am 1 bound by VPU/CPU or by Memory?

128 — A
64
g 3
§.) peak floating-point performance
: 16 \S\gun' T
=
% 8 = o |
o
g w T o |
k] 4 2 | - n Fl r wn
5 2 | =4 T 1 S
33 [T} ~
9 E Z 5l
B Y oy
. 25 H Q
[TE]
SE, &8, e
o - O
1/4 112 1 2 4 8 16

Operational Intensity (Flops/Byte)

What makes loops
A, B, C different?

Optimization Notice

Copyright © 2015, Intel C.

Advisor Roofline: under the hood

Roofline application profile:
Axis Y: FLOP/S = #FLOP (mask aware) / #Seconds

Axis X: Al = #FLOP / #Bytes
Seconds
User-mode sampling | _

Microbenchmarks

Performance (GFLOPS) (Actual peak for the
SP Veotor FMA Peak: 445.82 GFLOI current configuration
r_/'” __—"DEMeZtor FMA Peak: 221 23 CFLOPS &

SP Vector Add Pestt 110.6 GFLOPS

DF Vi eak: 56.21 GFLOFS
[]
Scalar Add Peak: 14.05 GFLOPS

Root access not needed

|
Binary Instrumentation
Arthmetic itens CouNts operands size (not cachelines)

Binary Instrumentation
Does not rely on CPU
counters

0.01 01 1

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved. ‘ |nte| .

*Other names and brands may be claimed as the property of others.

Getting Roofline in Advisor

FLOP/S Seconds #FLOP Count
= #FLOP/Seconds - Mask Utilization
- #Bytes

Step 1: Survey
- Nonintrusive. Representative J
- Output: Seconds (+much more)

Step 2: FLOPS

- Precise, instrumentation based
- Physically count Num-Instructions \/
- Output: #FLOP, #Bytes

Optimization Notice

Copyright © 2015, Intel Corporati i ved. Intel Confidential

Mask Utilization and FLOPS profiler

- Long-waiting in HPC: accurate HW independent FLOPs measurement tool

- Not just count FLOPs. Has following additions:

- (AVX-512 only) Mask-aware. Masked-Memory/Unmasked-Compute
pattern aware

- Unique capability to correlate FLOPs with performance data (obtained
without instrumentation). Gives FLOPs/s.

- Lightweight instrumentation, PIN-based, benefits from “threadchecker tools”
and more generally Advisor framework integration.

Optimization Notice
Copyright © 2015, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Why Mask Utilization Important?

for(i = 0; i <= MAX; i++) 0
c[i] = a[i] + b[i]; 100 /0

afi+7] alfi+6] a[i+5] | afi+4] "ali+3] N2y (a[i—'r'lj/ el)
+ +

bli+7] b[i+6] b[i+5] b[i+4] [bi+3] bﬁ#zjfb[r-r'lf 2)

c[i+7] c[i+6] cli+5] @ c[i+4] ' cli+3] g[]=>2j(c[i+'!” c[i] /]

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Why Mask Utilization Important?

3 elements suppressed

for(i = 0; i <= MAX; i++) - .
i (cond(d)) SIMD Utilization = 5/8

c[i] = a[i] + b[i];

62.5%
0 1joj1 101 1

Optimization Notice

Copyright © 2015, Intel C.
*Other names and brands

AVX-512 Mask Registers

8 Mask registers of size 64-bits VADDPD zmml {k1}, zmm2, zmm3
= k1-k7 can be used for predication zmml I a7 I a6 I a5 I a4 I a3 I a2 I al I a0 I
— kO can be used as a destination or source for mask
manipulation operations me2| o I Lie I 5 I e I e I £z I el I = I

me3|c7|c6|c5Ic4|c3|c2|c1IcO

4 different mask granularities. (a::) (a;:) (J;r-) (Jli) (ir) (if) qr) q)
For instance, at 512b: (T top Tyt Lo D1

S0 S0 S0 S S0 550 €N
b7+c7 [JE b5+c5 ba+cd b3+c3 bz+c2 LU BN

= Packed Integer Byte use mask bits [63:0]
— VPADDB zmml {k1}, zmm2, zmm3 zmml

= Packed Integer Word use mask bits [31:0]

— VPADDW zmml {k1}, zmm2, zmm3 Vector Length

= Packed IEEE FP32 and Integer Dword use mask bits [15:0] 128 256 512
Byte 16 32 64
— VADDPS zmml {k1}, zmm2, zmm3 Word 8 16 22
* Packed IEEE FP64 and Integer Qword use mask bits [7:0] element Dw ord/SP 4 8 16
size Qw ord/DP 2 4 8
— VADDPD zmml {k1}, zmm2, zmm3

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Survey+FLOPs Report on AVX-512:
FLOP/s, Bytes and Al, Masks and Efficiency

Elapsed time: 2,205

, Summary z Survey & Roofline

ﬂ Refinement Reports

[© Mot Vectorized] [% | FILTER AllModules =] [AllSources = || Loops || All Threads |

- fﬂﬁ‘“” Call Sites and 8 |TotaiTimew Type | Vectorized Lo.ﬂps .)| § vector | FLOPS And AVX-512 Mask Usage -
ps | Vector!. Efficiency | Gain..|vL.| ssues [grLops [al [Mask Utilization |
[loop in fCalcInteraction Sh.. | [| 0,050s[MB0# Vectorized (Rem... AVX512 353x 8 08470 0,007 50,0% ==
[loop in fGetEquilibriumF at1... | (1 0050s (BB Vectorized (Body: .. AVX512 BB [57% 16:8 @ 2Ineffec... 3,666 OO 0,345 79,2% o
[leop in fCalcInteraction_Sha... | [] | 0,030s ommm Vectorized (Remai... AVX512 [#9B&] 353 8 0,007 50,0%
[loop in fGetOneMassSite at |... | [| | 0,020s mmm Vectorized (Remai... AVX512 [[Z3%& |12& 8§ 1lneffec.. 0,125 79,2%
[loop in fSiteFluidCollisionBG... | [| 0,010s @ Vectorized (Remai... AVX512 [E38%]305% 8 @ 1lneffec.. 0,113 37,5% 03
" [loop in fGetOneMassSite at .. | [0,010s@ Vectorized (Remai... AVX512 194 8 @ 1lneffec.. 1, 0,125 79,2%
< >
Source | Top Down | Code Analytics | Assembly | & i & Why No Vectarizati

Loop in fCalcinteraction_ShanChen_Boundary at
1bpFORCE.cpp:188

O

Vectorized (Remainder)

0,050s

Total time

AVXZ; AVX512F_512

Instruction Set

0,050s
Self time

* Memory 41% (7) (D

» Compute 35% (6)

o Other 24% (4) BB
Instruction Mix Summary

R]

44% Vectorization Efficiency

3,53x

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Average Trip Counts: 1

Traits

FMA
Mask Manipulations

Code Optimizations ®

Compiler: Intel(R) C++ Intel(R) 64 Compiler for applications
running on Intel(R) 64,

Version: 16.0.2.181 Build 20160204

Compiler estimated gain: 4,85x

@

Vectorization Gain

Code Optimizations Applied By Compiler During
Vectorization:
* Masked Loop Vectorization
¢ Unaligned Access in Vector Loop

©

GFLOPS: 0.8474
AVX-512 Mask Usage: 50

Instruction Mix

Memory: T Compute: 6 Other: 4 Number of Vector

Registers: T

General efficiency (FLOPS) vs.
VPU-centric efficiency (Vector Efficiency)

Function Call Sites and @torized Loops FLOPS And AVX-512 Mask Usage
HE L & | Total Timev Type — —
oo Vector |, Efficiency GFLOPS Mask Utilization
5@ [loop in fCalcInteraction_Sh... 0,050s_20,8% orized (F 44%
lloop in fGetEquilibriumF at ... | (] 0,050 [NEDME Vecigseet™Tody: .4 AVXS12 [<36% | 3,666) 03
- ectorized (Remai. AV¥312 [44% 1482
H Igh ectorized (Remai.| AVX512 [23% 18 8 ¥ 1ineffec.| 07683 0,125 79.2%
ectorized (Remai) AVX512 | [389 |305x 8 ¢ 1lneffec | 07402 0,113 37,5% =2
LOW F LO PS ectorized (Remai \AVX312 [~24% 194x 8 ¢ 1lneffec..\ 520) 0,125 79,2%
A ™\, s N
Function Call Sites and (| Vectorized Loops Vector/ FLOPS And AVE-512 Mask Usage
+H[E] & | Total Timev Type — : | -
0ops Vector|... Efficiency Gain.., [VL .| | =M€ | GFLOPS Al Mask Utilization
[loop in fCalcInteraction_Sha... | [] 0,050s (NGB Vectorized (Remail. AVX512 [44% |35 8 0,47 Em 0,097 50,0% D
lloop in fGetEquilibriumF at|... | [] 0,050¢[BDMSS Vectorized (Body; . AVXS12 [36% |579¢ 16,8 § 2 Ineffac... 3,666 O 0,345 79,2% D
ectorized (Remai.. AVX512 [405 |353% 8 148 = 0,007 50,0% 0
LOW ectorized (Remai.). AVX312 | 23% |184x & 9 1Ineffsc... 0,768 O 0,125 79,2% 0
il AVK312 | |=38% - 07243 375%C3

High FLOPS

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

~24%

0,125

| 79,2%

Interpreting Roofline Data: advanced ROI
analysis.

Final Limits

Current Limits

(assuming perfect optimization) (what are my current bottlenecks)

Long-term ROI, optimization strategy Next step, optimization tactics

T -

Ferformance (GFlops/sec)

A 4418081 - - 2 4 lektdl

2 Compute bound

o

o &

o ¢

& &

£ > .

8 0 Finally compute-bound

] {(\ A

£ Q¢ /A Invest more into

g b*o‘\ effective CPU/VPU Check your

o R .. . gt Advisor Surve

5 N SIMD) optimization y

2 0 =0 () p 3020502 - and MAP results

Finally memory-bound

Invest more |nt0 > Seff Time: 0.346s q‘rg‘ﬂaz\zﬁme 03465 Atthmetic \megzn%upsme)
. ource o] n .cop Analytics .00 mi =) i a mpiler Di; i il

effective cache nsity, FLOP/byte Soure | Top Bown | Loup Ansyics | Loop Assenbly S o

Utlllzatlon 3::]:]& for (i =2; i < i_2; HS:ZKE T°‘5‘;";"‘5:5| 2 ‘LWP;Z:;J : ‘ o ‘A

0,151s |

Optimization Notice
Copyright © 2015, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

BAGKUP

Batch Mode Workflow Saves Time

Intel® Advisor - Vectorization Advisor

Turn On Run several analyses in batch
Batch Mode as a single run

Select
- analyses to Contains pre-selected criteria
> run for advanced analyses

EEdOe

Click
Collect all

Optimization Notice

Copyright © 2015, Intel Corporation. ights reserved.
*Other names and brands may be clain s the property of others.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS™. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Configurations for Binomial Options SP

y Binomial Options SP (Higher is Batter) Optimization Notice
. Intel's compilers may or may not optimize to the same degree for non-Intel
k] Barallelized Yectotized microprocessors for optimizations that are not unique to Intel microprocessors. These
s ’ ’ optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
H 179 - Sealar Intel does not guarantee the availability, functionality, or effectiveness of any
E oo T Single Thread Y optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
5
T Snele Thead - seatar optimizations in this product are intended for use with Intel microprocessors. Certain
e s S— optimizations not specific to Intel microarchitecture are reserved for Intel
2007 2010 2012 2013 2014 microprocessors. Please refer to the applicable product User and Reference Guides for
';ﬁv ";;né%‘: o r;_';::w) F;fh:n“ more information regarding the specific instruction sets covered by this notice. Notice
e . ST ok I revision #20110804
|larpertown Mehalem Westmere vy ndge Haswel

Performance measured in Intel Labs by Intel employees

Platform Hardware and Software Configuration

Unscaled
Core L1 Memory H/W
Frequenc Cores/ Num Data L1I L2 L3 Frequenc Memory Prefetchers HT Turbo O/S Operating Compiler
Platform y Socket Sockets Cache Cache Cache Cache Memory y Access Enabled Enabled Enabled C States Name System Version
Intel® Xeon™ Disable Fedora 3.11.10- icc version
5472 Processor 3.0 GHZ 4 2 32K 32K 12MB None 32GB 800 MHZ UMA Y N N d 20 301.fc20 14.0.1
Intel® Xeon™ 1333 Disable Fedora 3.11.10- icc version
X5570 Processor 293 GHZ 4 2 32K 32K 256K 8MB 48GB MHZ NUMA Y Y Y d 20 301.fc20 14.0.1
Intel® Xeon™ 1333 Disable Fedora 3.11.10- icc version
X5680 Processor 3.33GHZ 6 2 32K 32K 256K 12MB 48MB MHZ NUMA Y Y Y d 20 301.fc20 14.0.1
Intel® Xeon™ E5 1600 Disable Fedora 3.11.10- icc version
2690 Processor 2.9 GHZ 8 2 32K 32K 256K 20MB 64 GB MHZ NUMA Y Y Y d 20 301.fc20 14.0.1
Intel® Xeon™ E5
2697v2 1867 Disable Fedora 3.11.10- icc version
Processor 27GHZ 12 2 32K 32K 256K 30MB 64 GB MHZ NUMA Y Y Y d 20 301.fc20 14.0.1
Codename 2133 Disable Fedora 3.13.5- icc version
Haswell 22GHz 14 2 32K 32K 256K 35MB 64 GB MHZ NUMA Y Y Y d 20 202.fc20 14.0.1

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

(lntel) |
experience
what'’s inside”

